The Carbon Impact of Daily Travel

Nancy McGuckin
Travel Behavior Analyst
Session #529 - TRB 2009
Outline

- Background on Green House Gases (GHG) and passenger travel’s role
- US Fleet mix and fuel efficiency
- Gas costs and the effect on vehicle travel
- Some thoughts on future directions
Carbon dioxide accounts for over 80 percent of total GHG emissions in the US...

Any process that burns fossil fuel releases carbon dioxide (CO₂), a greenhouse gas, into the air...

US Primary Energy Consumption

<table>
<thead>
<tr>
<th>Energy Source</th>
<th>Energy Consumption</th>
<th>Resulting Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Coal</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>Petroleum</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>Non-Fossil</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Source: Energy Information Agency
“On-Road” sources account for over 80% of all GHG from transportation...

Source: Green House Gas Emissions from the US Transportation Sector, 1990-2003
www.epa.gov
Fuels used for transportation vary in the amount of CO₂ impact...

Source: Green House Gas Emissions from the US Transportation Sector, 1990-2003 www.epa.gov
Gasoline ‘tail-pipe’ emissions are about half CO$_2$ and half water vapor…

Note: Tailpipe emissions account for about 60% of lifecycle emissions from vehicle transport, and do not include manuf./tires/maintenance/fuel production, etc. (VTPI)

Passenger travel is the largest sources of greenhouse gas emissions from mobile sources...

Passenger travel accounts for 82% of VMT and about 75% of CO₂

Source: McGuckin’s analysis based on Highway Statistics VM-1 2009. Gasoline=8.8Kg CO₂ per gallon, diesel=10.1Kg CO₂ per gallon
Fleet Characteristics and CO₂ Emissions

Light Duty Truck Share of New Sales

E.U. 11%

U.S. 53%
Fuel efficiency of the passenger fleet

- In 1978, congress passed the National Energy Conservation Policy Act which mandated fuel efficiency standards and planned to double fuel efficiency of the fleet by 1987.

- Since 1987, the fuel economy has slowly declined as vehicles have gotten larger and heavier, and as light-duty trucks (SUV’s primarily) grew as a share of the passenger fleet.

- The recent (since 2005) overall increase in fuel economy is due to changes in light-truck fuel economy and a slightly lower light truck market share, which peaked in 2004 at 53 percent and is projected to be 48 percent in 2008.

US Fleet fuel efficiency has remained virtually the same for many years…

Fleet Average MPG and Oil Consumption

- Passenger Car
- Light Truck
- Fleet Average

Average MPG

0 5 10 15 20 25 30 35

Light-Duty Automotive Technology and Fuel Economy Trends: 1995 through 2007, Compliance and Innovative Strategies Division And Transportation and Climate Division, Office of Transportation and Air Quality, U.S. Environmental Protection Agency,
One of the reasons is the rising proportion of SUVs in the fleet mix…

Source: NHTS Data series, including preliminary 2008
Fuel economy standards are based on sales by class and not use...

Source: NHTS
The mix of vehicles, the amount they’re driven, and the resulting CO₂ from passenger travel varies by region:

Average Est. CO₂ per Household By Region

- Mid-Atlantic
- Pacific
- Mountain
- New England
- East North Central
- South Atlantic
- West North Central
- East South Central
- West South Central

Kg of CO₂ per Household per Year

Source: National Household Travel Survey (NHTS), 2001
And by area type...

Annual Miles and CO2 by US Households by Area Type

Source: 2001 NHTS

Miles or CO2 (Kg)
And by factors such as workers, drivers, density, and distance to transit...
But, the fleet mix is changing…

Hybrid/Alternative Fuel Vehicles by State

Source: NHTS 2008 preliminary
The Effect of Gas Cost on Carbon Emissions

Price per Gallon (2006)

- E.U.
 - Non-Tax
 - Tax
- U.S.
 - Non-Tax
 - Tax

Price per Gallon (2006):
- $1.00
- $2.00
- $3.00
- $4.00
- $5.00
- $6.00
Are Gas Prices High or Low?

National Average Cost per Gallon of Gas,
All Grades, All Formulations

Source: http://www.eia.doe.gov/oil_gas/petroleum/data_publications/wrgp/mogas_history.html
Gas cost per mile of travel is stable...

Fuel-Cost per Mile is 25% lower than in 1978

Per-mile fuel cost tracks fuel prices when fuel economy remains flat

Source: EIA and McGuckin’s analysis
Is it the price of gas that effects vehicle travel?

Source: McGuckin’s analysis of EIA historical data and TVT, FHWA data
Or is it the economy?

Source: McGuckin’s analysis of TVT trends, population, and BEA GDP (US Census) Quarters 1 and 2 of 2008 (awaiting revision)
When gas prices go up and the economy goes down:

- People move to transit
 - *Even a small mode shift can overwhelm transit*
- People share rides to work
 - *HOV lanes can see more congestion*
- People chain more trips together
 - *Short trips may increase cold starts (air quality impacts)*
- Save a trip by having goods delivered
 - *More delivery trucks into neighborhoods (safety)*

All of these also have policy implications…
Some thoughts on future directions...
Just a few ways to cut CO2 emissions from daily travel…

- Increase fleet fuel efficiency
- Increase use of the right alternate fuels
- Improve traffic flow/Less congestion
- Provide better alternative modes
Some ‘What if’ Scenarios:

Increase fleet fuel efficiency

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Pct Decrease from Base Case (Impact)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Based on current VMT per vehicle:</td>
<td></td>
</tr>
<tr>
<td>Base Case (Current Est.)</td>
<td><null></td>
</tr>
<tr>
<td>If 20% of vehicle fleet were hybrid (55 mpg)</td>
<td>2.5%</td>
</tr>
<tr>
<td>If fuel efficiency were raised 10% for all vehicles</td>
<td>9.1%</td>
</tr>
<tr>
<td>If all Vans, SUVs and P-U were replaced by cars</td>
<td>11.6%</td>
</tr>
<tr>
<td>If fuel efficiency were raised to 29 mpg for all vehicles</td>
<td>31.7%</td>
</tr>
<tr>
<td>If we doubled fuel efficiency in each vehicle class</td>
<td>50.0%</td>
</tr>
</tbody>
</table>

Source: McGuckin’s analysis based on NHTS 2001
Although fleet fuel efficiency has remained flat, we’ve proven that policy can effect a change…

Increase fleet fuel efficiency

Fleet Average MPG and Oil Consumption

- **Passenger Car**
- **Light Truck**
- **Fleet Average**

Light-Duty Automotive Technology and Fuel Economy Trends: 1995 through 2007, Compliance and Innovative Strategies Division And Transportation and Climate Division, Office of Transportation and Air Quality, U.S. Environmental Protection Agency,
What if we doubled fuel efficiency in each class?

Increase fleet fuel efficiency

Source: McGuckin’s analysis based on vehicle use from NHTS
We have to remember that many common alternate fuels still have CO2 impacts…

The right alternate fuels

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>Unweighted CO2 Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquefied Petroleum Gas</td>
<td>6</td>
</tr>
<tr>
<td>Compressed Natural Gas</td>
<td>5.5</td>
</tr>
<tr>
<td>Ethanol From Corn</td>
<td>8.5</td>
</tr>
<tr>
<td>Methanol From Natural Gas</td>
<td>8.2</td>
</tr>
<tr>
<td>Gasoline</td>
<td>8</td>
</tr>
</tbody>
</table>

And how these fuels themselves get to the consumer has impacts...

The right alternate fuels: Do the whole equation

<table>
<thead>
<tr>
<th>Type of Vehicle</th>
<th>Environmental Impact</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery-Powered Electric</td>
<td>No tail-pipe emissions, but impact depends on source of electric power (e.g. coal, oil, natural gas, nuclear)</td>
<td>The Telsa Roadster costs $109,000. Other small companies make low-speed vehicles starting under $10,000</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>Emits 95% less smog-causing pollutants and 30% less GHG than gasoline.</td>
<td>Honda’s Civic GX costs $25,200. Conversion kits start at $1900.</td>
</tr>
<tr>
<td>Ethanol/ Biodiesel</td>
<td>Lower emissions than gas, but critics say sometimes more energy is used to produce ethanol than is contained in the fuel itself.</td>
<td>Special models of Chrysler, Ford, and GMC vehicles can run on E85 and cost the same as regular models.</td>
</tr>
<tr>
<td>Hydrogen Combustion</td>
<td>Depends on whether hydrogen is extracted from fossil fuels or generated from water and sunlight Virtually no tail-pipe emissions.</td>
<td>BMW and Ford are making test vehicles, but no car is commercially available.</td>
</tr>
<tr>
<td>Fuel Cell</td>
<td>Depends on whether hydrogen is extracted from fossil fuels or generated from water and sunlight. Virtually no tail-pipe emissions.</td>
<td>Honda FCX Clarity is available for lease in SoCal.</td>
</tr>
</tbody>
</table>

Source: IntelligenceReport, Parade magazine, 01/04/09 parade.com/Intel with McGuckin’s edits/additions
Congestion contributes to CO2 emissions from vehicles…

Source: NHTS

Source: University of California, Riverside, via Alan Pisarski, ITE PPT
A solo commuter switching to public transit for a single day can save 4,800 pounds of CO2 in a year…†

Provide better alternatives

![Percent of Workers Taking Transit to Work](chart.png)

Source: 2001 NHTS

† Source: Public Transportation’s Contribution to U.S. Greenhouse Gas Reduction Fact Sheet, Sept. 2007, APTA
Summary

- The economic downturn is going to lower CO₂ emissions from travel
- It is possible to make dramatic changes in fleet fuel efficiency
- We could provide more incentives to improve the fleet/faster turnover
- Remember to do the whole equation on alternative energy sources
- Educate and encourage low-carbon behavior (e.g. ‘Conscience’ factors)
Thank you!

Contact:
Nancy McGuckin, Travel Behavior Analyst
www.travelbehavior.us
N_McGuckin@Rocketmail.com
(323)257-5144